Senin, 23 Januari 2017

Sekilas Pengantar Konseptual Mekanika Kuantum

1. Probabilitas

Dalam teori peluang, peluang suatu fenomena tidak dirumuskan dari pengukuran, melainkan berdasarkan analisa dan penghitungan. Adapun pengujian dari teori yang disusun barulah didasarkan pada pengukuran/hasil pengamatan. Sebagai contoh, peluang sebuah dadu memunculkan mata dadu “2” dapat kita hitung. Bila dadu seragam, maka tidak ada permukaan dadu yang lebih istimewa dibandingkan yang lain: tiap muka dadu memiliki kesempatan muncul yang sama.

      ...(1.1)

Karena dadu memiliki enam permukaan dan mata dadu “2” hanya ada satu maka peluang munculnya mata dadu “2” ialah

      ...(1.2)

Dengan demikian, secara teoretis rasio munculnya mata dadu “2” berbanding total pelemparan ialah

      ...(1.3)

Tentunya, peluang yang sama dimiliki oleh tiap mata dadu yang lain. Patut diingat bahwa hasil di atas kita peroleh tanpa melakukan pengukuran sama sekali. Namun, jika kita melakukan eksperimen pelemparan dadu, rasio yang kita ukur diharapkan bersesuasian dengan peluang yang dihitung.

Bila kita hanya melakukan percobaan beberapa kali (ruang sampel kecil), rasio yang kita peroleh berdasarkan hitungan peluang memiliki ketidakpastian besar. Hal ini karena sifat acak yang alamiah. Namun, jika kita melakukan percobaan dengan sampel semakin besar, faktor acak akan saling mengkompensasi sehingga rasio hasil pengukuran (Ru) akan semakin menuju rasio berdasarkan hitungan peluang,

Berikut ini ialah contoh eksperimen pelemparan dadu. Kekerapan munculnya mata dadu “2” dicatat kemudian diplot pada Gambar 1. Berdasarkan perhitungan, rasio kemunculan mata dadu “2” ialah RP = p(2) = 1/6 = 1,6667. Hingga 36 pelemparan pertama, ternyata mata dadu “2” hanya muncul tiga kali, sehingga

yang hanya setengah dari prediksi teori peluang. Namun, seiring meningkatnya melemparan, Ru akan semakin mendekati p(2). Hingga pelemparan ke-200, mata dadu “2” muncul sebanyak 33 kali,

Demikianlah prediksi teori peluang tidak banyak bermanfaat jika kita hanya memiliki ruang sampel yang kecil, namun jika kasus yang ditinjau melibatkan ruang sampel yang cukup besar maka teori peluang akan memberikan prediksi yang akurat.

Gambar 1: Grafik rasio kemunculan kumulatif pada pelemparan dadu. Semakin banyak jumlah pelemparan, rasio kemunculan akan semakin mendekati peluang teoretisnya.

2. Ketidakpastian

Mekanika kuantum dan teori klasik memiliki perbedaan esensial dalam hal kepastian pengukuran. Teori klasik menyatakan kuantitas/parameter suatu partikel (disebut observables) dapat dinyatakan secara tentu (akurasi titik), sedangkan mekanika kuantum menyatakan kuantitas suatu partikel tidak dapat ditentukan secara pasti, namun probabilitasnya dalam suatu selang dapat ditentukan. Ketidakpastian ini bukan karena kendala teknis, namun merupakan hukum alam yang tak dapat dilenyapkan. Misalkan untuk kasus posisi sebuah partikel P dalam ruang 2 dimensi. Teori klasik merumuskan bahwa posisi partikel adalah eksak pada (xP,yP), sedangkan mekanika kuantum menyatakan posisi partikel dalam ruang tak dapat ditentukan secara pasti, namun dapat diberikan dalam probabilitas untuk setiap selang. Agar lebih jelas, perhatikan diagram kontur berikut ini.

Gambar 2:   Posisi partikel P dalam bidang pada suatu kasus berdasarkan teori klasik (kiri) dan mekanika kuantum (kanan).

Berikut ini contoh intuitif mengenai tingkat kepercayaan (namun tidak analog dalam hal sebab ketidakpastian). Teman saya si X (terakhir kali bertemu minggu lalu) baru saja menelepon saya, namun saya lupa menanyakan lokasinya. Berdasarkan parameter-parameter yang saya peroleh, saya memprediksi 32% kemungkinannya ia masih di Makassar, 68% kemungkinan ia masih di Sulawesi Selatan, 95% kemungkinan ia masih di Indonesia, dan saya yakin 100% ia masih berada di planet Bumi. Dari angka-angka peluang ini, dapat pula diperoleh peluang X berada di luar negeri ialah peluang X berada di Bumi dikurangi peluang X berada di Indonesia, yaitu 5%.

Secara matematis, diagram kontur pada Gambar 2 dapat digantikan perannya oleh fungsi kerapatan probabilitas, P. Misalnya, dengan memilih posisi pada sumbu–X sebagai parameter, kerapatan peluang didefinisikan sebagai

Di mana peluang partikel tadi berada dalam selang x = a hingga x = a + δx ialah

Atau untuk δx ≪, dapat didekati sebagai

Pada contoh kasus partikel sebelumnya, kerapatan peluang koordinat partikel pada sumbu–x dapat diberikan dalam grafik berikut

Gambar 3: Peluang partikel berada dalam selang x3≤x≤x4 setara dengan luas daerah yang berwarna gelap berbanding luas total daerah dibawah kurva, yakni 32%. Untuk lebar selang yang sama, selang x3≤x≤x4 merupakan daerah yang paling mungkin untuk menemukan partikel. Peluang partikel berada dalam selang x1≤x≤x6 ialah sebesar 95%, suatu tingkat kepercayaan yang cukup baik. Adapun peluang partikel itu berada di luar selang itu ialah 5%. Jelas bahwa semakin tidak presisi selang yang digunakan, maka semakin besar tingkat kepercayaannya. 

Sekarang kita kembali ke makanika kuantum. Dalam mekanika kuantum, ketelitian pengukuran dua parameter yang berpasangan saling bergantung. Parameter berpasangan ini ialah posisi dan momentum serta energi dan waktu. Hal ini dikarenakan pengukuran kuantitas satu akan mempengaruhi kuantitas yang lain. Hubungan ini dapat diberikan dalam pertidaksamaan yang dikenal sebagai prinsip ketidakpastian Heisenberg.

Dengan ℏ = h/2π = 1,055⋅10-34 J s adalah reduksi tetapan Planck.

Bagian pertama persamaan (2.4) menunjukkan bahwa semakin teliti pengukuran posisi suatu partikel maka semakin tidak teliti pengukuran momentumnya, begitu pula sebaliknya. Mengingat kecilnya nilai ℏ, prinsip ketidakpastian Heisenberg memperkenankan kita dapat mengukur posisi dan monentum hingga ketelitian 10-17 m dan 10-17 J s m-1; sangat teliti bahkan untuk sebagian besar keperluan penelitian di laboratorium. Oleh karena benda-benda makroskopik memiliki ukuran yang jauh lebih besar dari batas ketelitian itu, pembatasan dari prinsip ketidakpastian ini tidak dapat dirasakan efeknya.


3. Dualisme Gelombang-Partikel

Teori Maxwell yang menyatakan cahaya sebagai gelombang elektromagnetik sukses menjelaskan berbagai fenomena cahaya, seperti fenomena optik (percobaan celah ganda Young) dan eksperimen Franck–Hertz. Namun, Rayleight dan Jeans gagal menjelaskan spektrum radiasi termal menggunakan teori Maxwell. Teori Rayleight–Jeans memprediksi ketakhinggaan pancaran pada gelombang pendek (dikenal sebagai bencana ultraviolet) yang bertentangan dengan data eksperimen. Teori gelombang juga gagal menjelaskan fenomena lain yang ditemukan kemudian, yakni efek fotolistrik dan efek Compton.

Untuk memecahkan persoalan radiasi termal, Max Planck membangun teori radiasi dengan asumsi bahwa cahaya tersusun dari foton dengan energi diskrit (terkuantisasi) dengan kelipatan tertentu yang disebut kuanta (seperti anak tangga yang hanya terletak pada posisi tertentu). Kuantisasi cahaya ini berimplikasi bahwa cahaya hadir sebagai suatu partikel yang dapat dicacah (dikenal sebagai foton). Teori Planck inilah yang kemudian menjadi landasan dari fisika kuantum.

Gambar 4: Interferensi cahaya pada percobaan celah ganda menunjukkan sifat cahaya sebagai gelombang. Pola gelap terang ini muncul karena interferensi antara gelombang dari kedua celah (kiri). Ketika puncak gelombang saling bertemu, amplitudonya dikuatkan sedangkan bila lembah bertemu puncak maka amplitudonya lenyap. Interferensi gelombang ini tertangkap layar sebagai pola gelap-terang (kanan).
Sumber: http://www.physicsoftheuniverse.com/topics_quantum_superposition.html, http://www.fnal.gov/pub/today/SpecialROWMINOS111408.html.

Teori cahaya sebagai partikel mampu menerangkan efek fotolistrik dan hamburan Compton. Namun, teori partikel ternyata tidak mampu menerangkan pola interferensi dari percobaan Young. Dengan demikian, baik teori cahaya sebagai gelombang maupun teori cahaya sebagai partikel sama-sama tidak dapat menjelaskan perilaku cahaya secara utuh, namun keduanya dapat saling melengkapi, memberikan gambaran lengkap fenomena elektromagnetisme. Perilaku cahaya sebagai gelombang dan sebagai partikel dalam fenomena yang berbeda ini dikenal sebagai dualisme gelombang–partikel.

Gambar 5: Dualisme gelombang-partikel: tiap partikel berkorelasi dengan suatu paket gelombang, yang menyiratkan ketidakpastian pengukuran posisi dan momentumnya.

Untuk foton dengan massa diam m0 = 0, efek fotolistrik memberikan energi foton E=hν, sedangkan relativitas khusus memberikan E=pc sehingga berlaku jalinan λ=h\/p. Adalah Louis de Broglie yang pertama kali mengajukan hipotesa bahwa jalinan ini juga berlaku pada partikel masif (memiliki massa diam). de Broglie merumuskan suatu partikel bermassa m dan kecepatan v berkorespondensi dengan suatu gelombang dengan panjang gelombang

yang selanjutnya dikenal sebagai panjang gelombang de Broglie. Hipotesa de Broglie ini memberikan penjelasan yang memuaskan dalam teori atom. Eksperimen celah ganda menggunakan elektron menghasilkan pola interferensi yang serupa dengan hasil percobaan Young mengukuhkan teori de Broglie. Percobaan Estermann dan Otto Stern membuktikan partikel yang lebih besar juga menghasilkan pola serupa. Jadi dapat disimpulkan semua materi secara alamiah memiliki sifat gelombang. Tentu saja, pada benda makroskopis, panjang gelombang de Broglie-nya jauh lebih kecil dari pada ukuran benda sehingga efek gelombang dari benda makroskopis tidak dapat terdeteksi.

Gambar 6: Percobaan penembakan elektron pada celah ganda menghasilkan pola gelap terang khas interferensi gelombang.
Sumber: http://nau.edu/cefns/labs/electron-microprobe/glg-510-class-notes/introduction/

4. Persamaaan Gelombang

Menggunakan sifat gelombang de Broglie dari suatu partikel, Erwin Schrödinger merumuskan analogi persamaan gelombang dari partikel dengan massa diam m dengan operator energi yang berada di daerah dengan potensial V, yang dikenal sebagai persamaan Schrödinger.

Persamaan Schrödinger ini berbentuk persamaan gelombang dengan fungsi gelombang ψ dan variabel posisi dan waktu. Dengan demikian, fungsi persamaan Schrödinger adalah menemukan fungsi gelombang ψ(r,t) yang sesuai dengan parameter-parameter yang telah tentu. Untuk dinamika dalam ruang satu dimensi (misal sumbu–x) dan tak bergantung waktu, maka ψ = ψ(x), laplacian , dan Hamiltonian adalah tingkat energi kedudukan, sehingga persamaan Schrödinger (4.1) dapat disederhanakan sebagai

Bila E > V, persamaan (4.2) memiliki solusi umum

Dengan A dan B adalah suatu tetapan (yang dapat ditentukan kemudian) yang berperan sebagai amplitudo gelombnag. Adapun bila E < V, persamaan (4.3) memiliki solusi umum

Karena persamaan Schrödinger merupakan persamaan yang dirumuskan dari analogi, maka persamaan ini tidak lebih dari persamaan matematis belaka hingga ditemukan tafsiran dari fungsi gelombang Schrödinger dalam realita.

Max Born yang memberikan tafsiran bahwa kuadrat dari nilai mutlak fungsi gelombang menggambarkan rapat probabilitas keberadaan partikel,

Jadi, |ψ(x)|2 mempresentasikan kerapatan peluang menemukan partikel pada sembarang nilai x.

Contoh kasus dinamika elektron dalam ruang yang dipengaruhi oleh potensial. Kita ambil kasus sederhana, gerak elektron dalam 1 dimensi dengan potensial penghalang yang berbentuk persegi dengan lebar L. Mula-mula sekumpulan elektron masing-masing dengan energi E berada pada daerah I, dan akses ke daerah III dibatasi oleh potensial penghalang sebesar V0 > E pada daerah II. Dalam tinjauan klasik, peluang menemukan elektron di daerah I terdistribusi secara merata. Fisika klasik juga meramalkan tidak mungkin ada elektron dari daerah I yang dapat berpindah ke daerah III, dikarenakan potensial penghalang lebih besar daripada energi kinetik elektron.

Gambar 7: Elektron dalam ruang 1 dimensi (sumbu–x) mula-mula tersebar pada derah I. Pada daerah II (4π < x < 6π) hadir potensial penghalang sebesar V0 > E. Berdasarkan mekanika kuantum, ada kemungkinan elektron menyeberang ke daerah III. 

Dalam mekanika kuantum, kehadiran potensial V0 menyebabkan peluang menemukan elektron tidak seragam, melainkan terdistribusi secara periodik. Demikian pula meskipun V0 > E, ada kemungkinan elektron menembusi dinding penghalang dan masuk ke daerah III. Dengan demikian, jika terdapat N≫ elektron mula-mula pada daerah I, sebagian di antaranya dapat berpindah ke daerah II. Fenomena ini dikenal sebagai penerowongan kuantum (quantum tunneling).

Gambar 8: Fungsi gelombang ψ dan fungsi probabilitas P=|ψ|^2 elektron dalam kasus dibawah potensial penghalang persegi dengan lebar L. Kemungkinan menemukan elektron paling besar di sekitar puncak-puncak kurva |ψ|2. Nampak bahwa meskipun potensial penghalang di daerah II lebih besar daripada energi kinetik elektron, probabilitas menemukan elektron tidak lenyap di daerah III, meskipun probabilitasnya menurun drastis di daerah dengan potensial penghalang. Misalkan bila L = 2π m,  E = 1.37⋅10-39; J dan V0 = 1,02 E, sekitar 30% elektron dari daerah I akan berhasil menembus penghalang menuju daerah III, 70% sisanya tertahan di daerah I.

Untuk tujuan praktis, semisal dalam teknologi elektronika, jumlah elektron yang dilibatkan dalam suatu proses sangat besar. Dalam satu gram zat saja terkandung 1020 -1023 atom. Arus sebesar 1 mikro-Ampere disebabkan oleh gerak 6⋅1012 elektron tiap detiknya. Dengan demikian, mekanika kuantum dapat memberikan prediksi yang sangat akurat.


5. Keruntuhan Fungsi Gelombang

Fisika klasik merumuskan suatu sistem secara deterministik (dari kata determine: tentu), artinya jika suatu sistem diperikan oleh n parameter, jika n-1 parameter telah diukur (yang mana dimungkinkan diukur secara pasti) maka parameter yang tersisa dapat diukur maupun dihitung dengan pasti. Misalnya untuk gerak lurus berubah beraturan, lintasan partikel memenuhi

Bila posisi mula-mula, kecepatan, dan percepatan yang dialami benda telah diukur, maka posisi benda pada setiap waktu dapat diketahui dengan jelas/pasti.

Tafsiran mekanika kuantum mengenai perilaku sistem kuantum; yakni melibatkan ketidakpastian yang tidak dapat diketahui sumbernya dan keadaan suatu sistem tidak dapat ditentukan hingga dilakukan pengamatan; menimbulkan beragam reaksi dari fisikawan pada masa pengembangan mekanika kuantum. Hal ini dikarenakan interpretasi semacam itu bertentangan dengan prinsip determinisme dan realisme, yaitu suatu gejala alam telah terdefinisi dan tetap eksis tanpa memerlukan kehadiran pengamat. Salah satu tanggapan yang populer atas realitas yang bergantung pada pengamatan ialah paradoks Schrödinger. Misalkan seekor kucing dimasukkan ke dalam kotak tertutup dengan persediaan makanan dan minuman cukup, ditambah fasilitas ekslusif berupa botol berisi gas yang sangat beracun dengan mekanisme pemecah botol menggunakan peluruhan radioaktif. Setelah selang waktu tertentu, kemungkinan radioaktif yang meluruh cukup untuk memicu pemecah botol ialah 50%. Pertanyaannya, apakah kucing malang tadi hidup ataukah mati? Mekanika kuantum menyatakan peluang peluruhan (yang berimplikasi pada nasib kucing) belum mewujud ke dalam realitas hingga kita melakukan pengamatan. Artinya, hingga kita menengok ke dalam kotak, kucing tadi berada dalam keadaan superposisi: 50% hidup dan 50% mati.

Paradoks Schrödinger dapat disederhanakan dalam kasus setara yang lebih akrab, semisal pelemparan koin. Meskipun tidak melibatkan mekanisme peluruhan, namun esensi mengenai masalah probabilitas tetap termuat. Ketika kita melempar koin, kemungkinan sisi angka atau sisi Garuda menghadap ke atas setelah jatuh masing-masing 50%. Dalam formalisme mekanika kuantum, fungsi gelombangnya dituliskan sebagai |ψ⟩ = 1/√2 (|angka⟩ + |garuda⟩) atau |ψ|^2=1/2 ([angka]+[garuda]). Ketika koin telah dilempar dan kita mengamati permukaan yang terlihat adalah angka maka jelaslah realitasnya ialah 100% angka dan 0% Garuda. Jika digali secara mendalam, kita mungkin akan bertanya, ke mana perginya 50% probabilitas kemunculan Garuda? Dalam tafsiran Kopenhagen (dengan tokoh utama Niels Bohr dan Werner Heisenberg), fungsi gelombang runtuh saat pengamatan. Artinya, ketika pengamatan menunjukkan salah satu keadaan mewujud menjadi realita, peluang keadaan-keadaan lain yang dimungkinkan runtuh seketika.

Einstein tidak menyukai ide ketidakpastian, realitas bergantung pengamat, dan instaneous action at distance semacam itu. Ia menganggap mekanika kuantum bukanlah teori kuantum yang lengkap dan fundamental, melainkan suatu gambaran probabilistik dari teori yang lebih fundamental. Einstein kemudian mengajukan percobaan angan-angan berkaitan dengan produksi pasangan (pair production). Produksi pasangan ialah pembentukan partikel elementer dan antipartikelnya dari foton. Produksi pasangan ini memenuhi kekekalan muatan q, momentum p, dan total momentum sudut J. Dengan demikian, bila salah satu partikel elementer yang dihasilkan bermuatan -1, maka partikel pasangannya harus bermuatan +1, karena muatan foton adalah nol. Contoh produksi berpasangan adalah pembentukan pasangan elektron–positron dari foton yang melintas di dekat inti atom,

Elektron dan positron adalah dua pertikel yang identik, kecuali muatan listriknya berbeda tanda, yakni -e dan +e. Demikian pula total momentum sudutnya mesti pemenuhi Jγ = Je- + Je+. Jadi, parameter-parameter dari partikel dan antipartikel yang dihasilkan dari produksi pasangan saling terikat satu sama lain.

Einstein berargumen, bila partikel dan antipartikel yang dihasilkan oleh produksi berpasangan kemudian terpisah. Berdasarkan interpretasi Kopenhagen, sifat dari partikel belum mewujud (terealisasi) hingga mereka diamati. Lalu bagaimana bila salah satu partikel (labeli sebagai A) diamati dan ternyata muatannya +1? Quantum entanglement memastikan partikel pasangannya secara spontan memiliki muatan -1. Jika partikel A baru mewujudkan muatannya setelah diamati, bagaimana ia berkomunikasi secara spontan sehingga partikel pasangannya mewujudkan muatan yang berlawanan? Padahal relativitas khusus tidak memperkenankan kecepatan informasi yang tak hingga; ada batas kecepatan di alam semesta, yakni kecepatan cahaya. Argumen ini dikenal sebagai paradoks Einstein–Podolsky–Rosen.

Einstein dan kolega sepemahamannya membuat hipotesa mengenai variabel tersembunyi (hidden variables) yang menjaga realisme dan determinisme hukum alam serta mengeliminasi aksi spontan jarak jauh. Ia berkeras bahwa suatu sistem (termasuk sistem kuantum) hanya bisa dipengaruhi oleh keadaan lokal di sekeliling sistem (principle of locality), bukan “telepati” atau “spooky action” yang memintas ruang. Meskipun demikian, sampai akhir hayatnya, Einstein sendiri tidak bisa menemukan apakah variabel tersembunyi itu.

Dari satu sudut pandang, keruntuhan fungsi gelombang seketika mungkin bukanlah penjelasan yang memuaskan. Beberapa interpretasi diajukan untuk menjelaskan keruntuhan fungsi gelombang lebih jauh. Salah satunya ialah transfer probabilitas dalam ruangwaktu. Misalkan dalam kasus pelemparan koin, jika dalam satu kali pelemparan muncul sisi angka, peluang munculnya sisi garuda “ditransfer” pada pelemparan berikutnya atau pada pengamat yang melakukan percobaan serupa di tempat lain.

Sekarang kita berandai-andai setiap orang di Bumi melempar koin secara serentak. Misalkan koin yang Reza sekeluarga (misalnya berlima) lempar ternyata memunculkan angka semua, padahal secara keseluruhan rasio munculnya sisi angka nyaris 50%. Apakah terjadi komunikasi antar koin seperti, “Hei, di rumah Reza ‘angka’ sudah muncul lima kali, kita harus memunculkan ‘Garuda’ untuk mengimbangi”? Tentunya mekanisme semacam ini pun mengisyaratkan aksi jarak jauh, meskipun kondisinya tidak seketat quantum entanglement. Bagaimanapun, penjelasan ini dapat menimbulkan miskonsepsi bahwa peluang tiap pelemparan tidak saling bebas. Interpretasi ini nyatanya tidak lebih terang dan sederhana dibandingkan konsep keteracakan alamiah, meskipun berimplikasi pada hasil yang sama.

Interpretasi lainnya mengenai fungsi gelombang ialah many worlds interpretation (MWI) yang dipopulerkan oleh Hugh Everett, yang menyatakan bahwa fungsi gelombang tidak runtuh setelah pengamatan, melainkan tiap-tiap keadaan yang mungkin akan terealisasi secara simultan di ruangwaktu yang lain (semesta paralel). Keadaan mana yang terealisasi setelah pengamatan menunjukkan cabang mana yang dilalui oleh semesta pengamat. Artinya, asas determinisme dan realisme terpenuhi dalam skala multiverse. Namun, tetap saja kita tak dapat menentukan cabang mana yang ditempuh oleh alam semesta (universe) kita hingga pengamatan dilakukan.

Gambar 9: Ilustrasi many worlds interpretation pada kasus “kucing Schrödinger”. Tiap kemungkinan yang diberikan oleh fungsi gelombang terealisasi pada alam semesta yang berbeda.
Sumber: https://en.wikipedia.org/wiki/Many-worlds_interpretation
Selengkapnya...

Selasa, 15 November 2016

Revisi Pengantar Kosmologi

Pengantar Teori Relativitas Umum dan Kosmologi revisi 2.0. Disertai penambahan materi pengantar relativitas umum secara signifikan. Total 273 halaman (5,64 MB). Atas saran beberapa pembaca, berkas saya unggah melalui Google Drive. Silakan dicek di sini.
Selengkapnya...

Jumat, 18 Maret 2016

Plagiator Super

Kemarin saya sempat memberikan pelatihan olimpiade astronomi untuk siswa SMA Kristen Barana, Rantepao, SulSel. Secara kebetulan, saya bertemu dengan buku yang sangat luar biasa. Sangat luar biasa, bung! Itu adalah buku ajar astronomi yang ditulis oleh Tim Penulis Astana Ilmu, sebuah lembaga bimbingan olimpiade di Jakarta. Berikut ini sampulnya:

Isinya...

Ya, 95% isinya adalah salinan identik dari buku saya, "Astronomi dan Astrofisika" yang saya bagikan secara gratis. Mereka tak puas hanya dengan memakainya secara gratis. Meskipun sedemikian malas menyusun sebuah buku, cuma menggunakan jurus [Ctrl]+[A], [Ctrl]+[C], [Ctrl]+[V], di sisi lain mereka cukup tekun dan ulet menghapus footer, judul, laman klaim, laman-laman pembuka, dan daftar pustaka. Menambahkan sekitar sepuluh halaman salinan artikel internet di bagian belakang, lalu merancang sampul baru yang bertuliskan "Tim Penulis Astana Ilmu". Sungguh penulis yang sangat kreatif! Nama saya dan judul asli buku lenyap tak berbekas, bahkan di daftar pustaka sekalipun!! Oh, maaf, bukunya tak punya daftar pustaka.

Saya mengeluarkan banyak waktu dan tenaga untuk membuat buku itu, saya bagi dengan cuma-cuma. Bahkan di revisi 3 saya masih membolehkan pembaca menyunting buku saya, tentunya dengan meminta izin tertulis dan tetap mencantumkan nama saya dan judul asli buku. Tapi rasanya, bagi Tim Astana Ilmu, itu tak cukup. Seluruhnya harus diklaim! Seluruhnya!! Bahkan mereka membagi hardcopy-nya sebagai bahan ajar dalam paket pelatihan mereka (baca: dikomersialkan). Kreativitas mereka sungguh luar biasa!




EDIT:

Saya telah berkomunikasi dengan pimpinan Astana Ilmu, dan beliau telah meminta maaf serta menjelaskan perihal kelalaian lembaga ybs. Permasalahan ini telah kami selesaikan secara damai. Terima kasih kepada saudara Andre atas rasa tanggungjawabnya. Semoga bisa jadi pembelajaran bagi para praktisi pendidikan dan keilmuan agar bekerja tanpa mengabaikan etika serta lembaganya bisa lebih teliti mengontrol penggunaan namanya.


Selengkapnya...

Kamis, 17 Maret 2016

Gerhana Matahari Sebagian 9 Maret 2016

Observasi gerhana matahari sebagian, Pelataran IPTEKS Universitas Hasanuddin, 06.00 - 10.15 WITa. Observasi ini merupakan observasi bersama antara Komunitas Bawah Pohon dan KSF Kuantum Himpunan Mahasiswa Fisika UNHAS, Mahasiswa Pemerhati Nobel Sains Unhas, serta Astronom Amatir Makassar. Admin sendiri tergabung dalam Komunitas Bawah Pohon yang dalam observasi ini bekerja sama dengan KSF Kuantum. Untuk itu kami mengucapkan terima kasih atas kerja keras teman-teman di KSF Kuantum dalam menyusun dan mempersiapkan acara sehingga kami bisa bekerja lebih optimal dalam teknis observasi.
Di Makassar, gerhana Matahari 9 Mei 2016 hanya nampak sebagai gerhana Matahari sebagian (puncak 88,57 %). Rincian kontak gerhana matahari ini ialah sebagai berikut:

kontak
waktu (WITA)
1
07.27
3
08.35
2
08.39
4
09.57


Berikut beberapa citra mentah yang diperoleh dengan instrumen apa adanya (refraktor 900/70 mm, eyepiece 20 mm, filter Mylar, kamera Samsung Ace 2).

Citra mentah gerhana Matahari.
Citra mentah gerhana Matahari.
Menjelang akhir gerhana (09.43), terlihat dua sunspot pada fotosfer Matahari.

Dan ini barisan gambar proses gerhana setelah memperbaiki kontras, kecerlangan, dan menggeser puncak warna (jeda tiap gambar sekitar 10 menit).
Barisan gambar gerhana Matahari (awal gerhana terpotong karena kendala alamiah dan faktor teknis)

Observasi bersama ini dihadiri ribuan peserta, dari anak sekolah (SD, SMP, SMA), mahasiswa, dosen, hingga masyarakat umum. Kegiatan meliputi presentasi materi mengenai gerhana Matahari, pembuatan kamera lubang jarum, ceramah dan shalat gerhana berjamaah, pengamatan gerhana matahari, dan permainan untuk anak-anak. Dari tim kami menyediakan dua refraktor 70 mm (satu milik UIN), refraktor 50 mm, sebuah proyektor surya, dan kacamata gerhana. Rangkaian kegiatan berlangsung dengan baik dan memuaskan. Berikut ini sejumlah hasil dokumentasi kegiatan:
Awan menggumpal di pagi hari menjelang observasi.
Menunggu gerhana...
Koordinator tim, Nur Hidayat seolah-olah memberi pengarahan pada operator (Aldytia, Syahrul).

Menyaksikan gerhana pada layar.
Operator Banyal nampak grogi ketika diwawancarai media.
Ada masalah kah?
Operator Banyal in action.
Live streaming gerhana matahari total dari Poso oleh tim MPN Sains. 
Siswa SMPN Cokroaminoto
Gerhana lewat refleksi ganda lensa kamera.
Operator Aldy memberikan keterangan mengenai kasus Mirna kerja teleskop.
Operator Uwais, capek ya?.
Operator Aldytia memberikan kesempatan peserta memotret tangkapan kamera yang terpasang pada teleskop, sekaligus memberikan kesempatan baginya untuk melirik peserta.
Tim AAM.
Tim AAM.
Ramai bah!
Foto narsis operator dan teman-teman.
Foto narsis dengan latar belakang proyeksi citra gerhana.
Koordinator Nur Hidayat berbincang dengan orang yang tidak saya kenal.
Massa mengerubungi layar proyeksi.
Massa yang berkerumun. Jangan ditanya di mana admin di situ, admin di belakang kamera.
Menyantap hidangan.
Jangan tanya saya mengenai apa yang mereka bahas.
Gambar lainnya:
Ceramah dan presentasi oleh Ketua Jurusan Fisika, Tasrief Surungan, P.Hd.
Operator Syahrul dan Pak Syukur.
Operator Syahrul dan tetua Amzar sedang berdiskusi, Nampak Fachrul mencoba bertransformasi di latar belakang (dan ia gagal).
Operator Yoko menyetel proyektor sambil memasang wajah serius.
Shalat gerhana berjamaah.
Mengamati proyeksi gerhana lewat sela jari (kamera lubang tangan).
Bonus foto admin dengan pose yang masih terlihat natural.

Selengkapnya...


Perhatian: Semua tulisan pada blog ini merupakan karya intelektual admin baik dengan atau tanpa literatur kecuali disebutkan lain. Admin berterima kasih jika ada yang bersedia menyebarkan tulisan-tulisan atau unggahan lain di blog ini dengan tetap mencantumkan sumber artikel. Pemuatan ulang di media online mohon untuk diberikan tautan/link sumber. Segala bentuk plagiasi merupakan pelanggaran hak cipta.