Minggu, 27 Februari 2011

Paradoks Ulang Tahun

        Berapakah jumlah orang yang berulang tahun pada hari yang sama di kelasmu? Berapa peluang dua orang memiliki hari ulang tahun yang sama? Dengan berasumsi satu tahun sama dengan 365 hari (mengabaikan kelebihan hari pada bulan Februari) tentunya peluang agar terdapat dua orang yang berulang tahun pada hari yang sama mencapai 100 % jika terdapat 366 orang. Namun jika kita membicarakan peluang, kita dapat menghitung kemungkinan-kemungkinan dalam peluang tertentu. Paradoks ini mengatakan diperlukan cukup 23 orang agar peluang ada dua orang yang memiliki hari ulang tahun yang sama 50 %. Lho?

        Problem ini dapat diselesaikan dengan metode probabilistik statistik. Jika terdapat 23 orang, berarti ada  23C2 = 253 pasangan yang bisa dibentuk. Peluang agar dua orang tidak memiliki ulang tahun yang sama ialah:

  • Q = 365/365 × 364/365 × 363/365 × ... × 342/365
  • Q = (1/365)23 × (365 × 364 × 363 × ... × 343)
  • Q = 365!/342! × (1/365)23
 

Jika dihitung akan didapatkan 0,49270276, sehingga peluang dua orang memiliki hari ulang tahun yang sama, P = 1 - Q = 0,507297 = 50,7297%.

         Jika kita mengambil pasangan-pasangan yang ada, yaitu 253, sedangkan peluang dua orang berulang tahun sama, p = 1/365 dan peluang dua orang memiliki dua hari ulang tahun yang berbeda q = 364/365, maka:
Q = (364/365)253  = 0,4995 sehingga P = 1 - Q = 1 - 0,4995 = 0,5005 = 50,05 %. 
Hasil yang tidak jauh berbeda dengan perhitungan pertama.
Sumber gambar : http://upload.wikimedia.org/wikipedia/en/thumb/f/ff/Birthdaymatch.png/450px-Birthdaymatch.png Pustaka : http://en.wikipedia.org/wiki/Birthday_problem, http://cryptoagi.blogspot.com/2010/01/birthday-paradox.html

3 komentar:

  1. itu pake combinasi bukannya permutasi

    BalasHapus
  2. dari 20 orang satu kelas, ada yang sama kok ulang tahun, saya dan si ubi

    BalasHapus

Related Posts Plugin for WordPress, Blogger...


Perhatian! Semua tulisan pada blog ini merupakan karya intelektual admin baik dengan atau tanpa literatur, kecuali disebutkan lain. Admin berterima kasih jika ada yang bersedia menyebarkan tulisan-tulisan atau unggahan lain di blog ini dengan tetap mencantumkan sumber artikel. Pemuatan ulang di media online mohon untuk diberikan tautan/link sumber. Segala bentuk plagiasi merupakan pelanggaran hak cipta.